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L.apunov's direct method is employed in the design of intentionally
onlinear controllers for a class of nonlinear, time varying processes.
The criterion of asymptotic stability is applied to the equation for
the error between the process output and a desired output obtained
from & model reference. A conbrol sigznal generated on the basis of
the error continually forces the process outpub to approach the desired
subpuz. The design procedure 1s developed for processes containing a
single time varying, nonlinez: gain element as well as linear time
varying paraaeters. Restrictions on the nonlinear function are derived.
In a general example the desizn procedure is applied to a second
order process containing a rerdonly switching nonlinear gain element
and also a time varying right holf plane role. A second example,
in which practical design considerations are discussed, involves the
desizn of a controller for a conditionally stable process. Analogue

computer results presented for both examples are in good agreement

with theoretical results. /94>77Q°l/
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I. TNTRODUCTICY

The direct method of Liapunov has been employed in the design of
intentionally nonlinear controllers for linear time varying processesl.
The design is based on comparing the processes output to a model
reference which has the desired output. A control signal generated on
the basis of the comparison forces the difference between model and
process output to be zero. The design procedure insures asymptotic
stability of the resultant system.

In this paper the design procedure discussed above is extended to
processes of the type shown in Fig. 1., i.e. processes containing a
single time varying, nonlinear gain element as well as linear time varying
parameters. Restrictions on f(y,t) are as indicated in (2) and (27). The
general form of £(y,t) is as indicated in Fig. 2.

The ronlinear controller in Fig. 1 generates'a controlled input,
u(t), which can be a function of any or 2all of the signals ¢, Ccg, €5 T»
or their derivatives. This controlled input is such that it forces
the {time Aerivative of a positive definite Liapunov function, V(e,é)
to b; negative definite. Consequently, the equilibrium state
corresponding to e = & = 0 is asymptotically stable in the large, i.e.
the process output must eventually equal the model out under any initial
conditions.

A general example to illustrate the design procedure is given in
which £(y,t) randomly assumes the two forms of Fig. 3a, while a(t) of
Fig. 1 switches randomly between O ;nd -1.

Another example of more practical interest is given in which a
controller is designed for the conditionally stable process 1llustrated
in Fig. 9. Without the controlled input, u(t), the process is unstable
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for large step inputs, r(t). The presence of the coniroller makes the
system stable for any magnitude of step input.

Analoge computer results for both excmples are presented which
dermorstrate the effectiveness of the design. Step responses and
trajectories in the e,e plane are shown for the general example. Phase
plane trajectories are given for the example involving the conditionally

stable systemn.




II. THIOREY

The process to be controlled in Fig. 1 is described by the equation
¢+ alt) ¢ = £(y,t) (1)
where £(y,t), as shown in Fig. 2, is a nonlinear gain element which

satisfies the conditions:

f (0,t) =0 (2a)

of = K(t) (2b)

oY

vy=0

Let K(t) and a(t) be expressed as positive constants plus time varying
parts as follows:

K(t) = K, + k(t) ; Ko> O (3)
and

a(t) = 2, + K(t) 5 3,> 0 (4)

It is also convenient to express the nonlinear function as:

ty,t) = {X(t) -6 G} ¥ (5)

As a consequence of (2b) , @ (y,t) must satisfy the conditions:
glo,t) = 0 | (6a)

1m oy 08t _ o (6b)
y-»0 ov

If (3), (4) and (5) are substituted into (1), the resulting

ecuation is

S+ agl = Ky + {x(t) - Byt) } v - (t) & (7



Tn order to obtain a constant coefficient term in the output
varizble ¢ on the left hand side of (7), unity linear feedback arcund
the process is introduced so that

y=r+u-=2=2
whers r is the process input, and u the controlled input.
Thus, (7) now becomes

Cw ags + K o= Ko (xeu) 4 {_k(t) - QS(y,t)} (r+u-c)- X (t)e

The mocdcl behevicr is described by the equation
g+ 2o cq *+ Kocg = Kor
The error between the desired output, ¢4 » and the process output, ¢ ,
is defined as
e =¢g~¢C
The equation in the error variable, obtained by subtracting (9)

sron (10) is

e + aoé + K e = {gf(y,t)- K(t)} u + {ﬁ(y;t)-k(t)} (r-c) +{ (t)e

For the special conditions

o (t) =0
f(y,t> = Koy
(12) reduces to
.e;+aoé+Koe = =K, u

Conditions (13:) eand (13b) imply that model and process are identical.
Under these conditions, cgq and ¢ will be identical only if the control
signel is zero. Therefore, the recuirement is placed on u that

u=o forcg=2c

-

(8)

(9)

(10)

(11)

(132)

(13b)

(1)

(15)



c
L=
where the widerline signifies vector not tion, i.e. Lc

with this recuirement on u (14) reduces to the autonomous linear

equaticn
& = Ag : (16)
where
[e] e
e =1. (7
o e?-J
and
A= (170)
-Xo= 25
Tor convenience, (12) is put into the forn
& = he+h (18)
where =
0

T, - k() u+ {8700 - K1)} (r-e) » L (228 | (19)

The peint ¢ = © represents an equilibrium state of (16).
Since {16) is identical in form to the autonomous model equation

39 = %EQ (20)
then g = 0 is an asymptotically stable equilibrium point if a
steble wodel is used. In the further developrent of the theory,
it is assuaed that this is the case.
Since (15) is a linear autonomous eouatlon, theorem I (see

ippendix) is applicable. The theorem is conveniently applied to

find a Liepurov function for (16). Since g = o is asymptotically



steble, then the theorem assures that there are symmetric positive
Gefinite matrices P and Q such that
T
AP + PA = 0 (21)
end alzo that

V(e) =e'Pe (22)

is a Liapunov functlon for (16). This same function is used to

,J

investigate the stability properties of (18) with the idea in mind
that it is to be made a Liapunov function of that eguation by

suiteble choice of w.

The time derivative of (22) is

T(e) =< Pe+ePd (23)
Use of {18) in (23) leads to
V(e) = gT(ATP + PA) e + ZgTRQ (24)

Tre first tern on the right hand side of (24) is negative definite
because of (21)‘% If the second term can be made less than or
ecual to zerc by cholce of the controlled input u, then V(g) will be
negetive definite. Consequently, V(e) (and also e) must then approach
zero, and u will accomplish the desired result of forcing the process
output to follow the model output.

In order to determine the required u, the second term of (24)

is expanded as follows:

m { '
221;3 = —2(p12e1+p22e2)(fgv:t;Pu?{ﬁ(y,t)—k(t)} (r-c) +X (t)¢ (25)
Q¥ )

y

N,

¥ This indicates the convenience of choosing (22) as a potential
Liapunov function for (18).
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Waere pa, and p,, are elements of the P metrix and £(y,t)/y has been
used in place of {Zi(t) - ,C-ﬁ'(y,t)} . To insure that this term remains

zero or ncgative, u is chosen as:

c
) ‘ Id -
u =%‘;{¢(y,t) - x(8)} (:‘—c‘!l | AL % sat b ¥ (26a)
L (y,t)/y bax + L{y,T /v | mex
7
vhere U = DP1o € * Py @2 (26b)
. ) E(-.“l for >l/§
and sat by =D for-1/b< € £ 1/b (26c)
L—l for ¥ < -1/b

The saturabion function (sat b § ) is used rather than sign § to
suiisiy (15) and to avoid sroblems involving the existence of solutions
of (12) . Ths saturation function is zero for U = 0, but the sign
fonchion is wadefined for ¢ = O.

The controlled input u(t) as given in (26) is bounded and assures
2 negetive delimite V(e) if

co>£§:f.:_t.l>o | (27}
Y

i.e. 2(y,t) lies in the first and third quadrants. That (y,t)/y
sust be positive is seen from (25). Since it appears in the
denominator terms of (25) and (26), it cannot be zero if u is to be
- bounded cortrol signal. It is also clear from (26) that

O(y,t) , k() and o{(t) must be bounded if u is to be finite. In
view of (5), the conditions Egﬁ(y,t)l { 00 , and lk(t)[ <0,

lea

2.

to tre condition £(y,t)/y < 0.
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Trose theoretical results will now be applied to a general

1T AYNTTITY AT T AT LT T,
Lil, G SO I e T

(o]
ct
S
o

The following excmple pertains t system of Fig. 1 with

rize of variation of the nonlinear functions,
3 ! 3 - + —

2(y,%) end $(y,t), is shown in Fig. 3. The pole at s = -a(t)

varics from s = o into the right half plene to s = + L. In accordance

Wity he model ueed, X(t) and a(t) ere chosen as:

() = 2 + k{t) (28a)
a(ty = 2 +K(¢) (28p)
whers - 1.6%u(x)S0 (28¢c)
and -3 &) -2 (28d)

Fig. 36 illustrates that ilya’(y,t) - k(t)t < 1.96.

Use of (9) lecds to the process equation

-

oo e 20 = 2(ee) ¢ {(8) - B0} {r eu - of —o(8) ¢ (29)

)

Since the model behavier is described by

Gy + 20g * 204 = 2 (30)

the error cquation found by subtracting (29) from (30) is
528+ 20 = {Brt) - K8 Fu+ {B0) - k(t) } (rmc) +oX(t) ¢ (31)

This equetiorn moy be written in matriz form as:

(o]

&=kt (32)
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or convenience,

Then the solubtion of (21) for P is

e rua 2]

(32 the Liap

njunction with (16) and (18) is

Q of (21) is chosen to be the

mov function is

Ll ° (33)
01

(34)
23]

(35)

2 2
V(e = 5/4 e, + 1/2 eq & * 3/8 e,

and
. M l
o+ - B - 3o 122
L

_r_

where b was chosen coual to 100.
.

Lne

ann
Sl ek

8.9(r-c)| + l?Sél}-sat b (2eq+ 3 ep)

stem is illustrated in Fig. 4.

logue compuber rec.lts for ¢, ¢4 and e.

{B(y,t)-k(t)}(r=c) +a(t)é {(36)
£(y,t)/y

{
)1“,u
JL

control signal is

(37)

Fig. 5 shows

These results were teken

wrile of () end k(%) were verying in a random step fashion between

in (2

- s 2 A3 e
1ixits dncacouoed

M,
Papgsc

comuter results in Fig.

-G

S¢) and (28d) and shown in Fig. 3.

It is

¢ cnd cg are in close agrecment.

6 demonstrate the action of the



a2l in terms of V(&). Projections of the curves V(&) = constant
olane are shovm along with trajectories of el(t) Vs. €p ().
For the second order system under consiceration, all initial conditions
ore zoro. Therefore, with the control signal present v(2)=0. In order

.

to obtain the results shown, the systea was allowed to run uncontrolled
unvil iy o s etc. ot waich times the control signal was applied

(t = 0 signifies the origin and is the time systen was started by applying
o two voli step input). It can be seen that all trajectories are such
that v (¢)< 0 after the control signel is applied. For t—=>e9, all
cctories woproach the origin along the switching line ey = -2/3 €.
Lnother chservation is that trajectories for Fig. 62 initially take
o move leisurcly approzch to the switching line than do those of Fig. 6b.
This is due to the fact that gain factors in the equation for u, (37),
cre exectly Lhose recuired for conditions in case a and larger than
cecuired for sonditions in case b. Also, the multiplying factor f£(y,t)/y
iz the ccuation for V(e), (3%), is lerger in case b than in case a, and
this results in a more negative ﬁ(g).

.

IV, DI3I00 ELUPIT FOR A CONDITIONALLY STABIE PROCESS

The control system shown in Fig. 7 is conditionally stable, For
reater than approximestely 2 volts, it is seen from the phase
vlene plot of Fig. € thet the trajectories go to infinity. Use of
the control teclmicuc under discussion is illustrated in Fig. 9. The

¢ 1ot be realized as shown, but is depicted as is so that

sizrals within the model and process defined by x and z may be compared.

-10-
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The model behevior 1s glven by (20) and the system equation

R R E=4¢2) &

"

v = r + u-c-1.5¢

%4 28+ 20 =2 - Gyl + {2-¢(y)} u + ¢(y){;c + 1.56}

Trne ecuction for ¢ then is

%+%+2ﬂ=ﬂﬁr+{Mﬂ—z}u—ﬂﬂ{c+L%}

The Liapunov function used in the last example is suitable

V]

meteiv of (34) being appliceble.

~he conbtrol signel u recuired to insure a negative definite

-+

- 3
u =é}9(r-c) l5éi} sat b (Eel + 362)

viacre eszin a b of 100 is used.

tith this control signel applied, the overall system becomes
acyaptoticelly stable and can handle any megnitude of input signal.
tnelozue compuber results indicated less than one percent error
vetween plant and model outputs for step inputs as large as 10 volts.

. i R 1
Fig. 10 shows a phase plane trajectory (¢! vs. d ) for the systen

It

o Fie. 7 with a L volt input applied. The results for d vs. & and
1 T '

¢ vs ¢ of I'g. 9, agein for a I, volt step input signal, are

shov o superdiiposed in Fig. 1l. It is seen that a close agreement

0

|2

ciste between plant and model outputs and output derivatives. The

-1]-

(38)

(39)

(40)

(11)

(42)



A b ¢

o dutermine the required linear rence in the feedback path

>

viaich renert. .e u. This is accomplished by determining what the
posdimyn emplicude of x (elso z) is for a given input, r. For step

Iasuts of 2, 3, 4 and 5 volts, signals y and 2z were measured. lleasured vs.
meorcticel values for y corresponding to each measured z are shown

ia Tie, 12, CJith this information it can be determined that for

sten inputs of 5 volts amplitude or less, the restrictions on

}
PN
P
2

W
(4

———
o

are required only for Iy‘}<l9 (for example f(y,t) mignt
be resresented by hard saeturstion for |y|>19). Also in this case,

the feedback nath must be capable of handlin without

o
< lulmax

Y
4.

saturation. A conservative estimate for iulv is 30 volts, and it

s determined by the inccuality

(43)

in important desizn consideration is the gein b in the linear
wenre of the saturation function defined in (26c). Since sat bd is
veed rethe Lhan sign &, there is a small region near the origin of
chE e, €5 p-ene 25 which u may not be large enoughto insure negative

defiritoness. Consequently, limit cycles may exdist. However, by choosing

large ensuzh, ary such limit cycle cen be reduced Lo a negligibly small
anplitude.

-] 2
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: romlire.s controller desizn procedure based on Liap nov's
af oot method and use of a model reference 1is extended in this paper
to proccszes roving rot only time varying peremeters, out a single

time veryiny, nordinear gein element as well. Thus, the procedure

L condiiion which the nonlinearity must saticfy is derived. Inherent
r. procecure is the assurance that the resulting controller

wH11 rove tae desireable property of gurararnteelng the asymptotic stability

Srachicen desiszn considerations discussed in connectlon with a

a example involving & conditionally steble process include the
cossibilitics of limit cycles cdue to the function sal bY¥ , the method
-~chilities of the feedback path, and the recuired
ronoc of y  Jor wnich #(y,t) must satisfy the conditlons imposed.

inzlozue computer results presented beer out the validity of the

~13-
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te {negative definite) if F =0

. A ;o ~7 ' - P N A a I . ey .
2. & fwackion 3(it) is positive deTinite if there exists a positive

such G(x,t) = F(x) and G(0, ©) = O.

Pd

cnly if, given any svaetiric positive definite matrix 0, there

o &

T
AP+ 2=-0 (2)
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